قالب:تكامل لاتيني/شرح

من أرابيكا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

ينشئ هذا القالب رموز التكامل اللاتينية باستخدام يونيكود، لصيغ {{{1}}} المضمنة كبديل لـ لاتخ التي تولَّد في <math>.

أمثلة

بدون قالب {{تعبير رياضي}}

دالة غاما

Γ(z) =
0
ettz − 1dt
Γ(''z'') = {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''

تكامل خطي


C
F(x) ∙ dx = −
C
F(x) ∙ dx
{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' = −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''

معادلات ماكسويل


V
EdS = 1/ε0
V
ρ dV

V
BdS = 0

S
Edx = −
S
B/tdS

S
Bdx =
S
(μ0J + 1/c2E/t) ∙ dS
{{intmath|oiint|∂''V''}} '''E''' ∙ ''d'''''S''' = {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|''V''}} ''ρ'' ''dV''
{{intmath|oiint|∂''V''}} '''B''' ∙ ''d'''''S''' = 0
{{intmath|oint|∂''S''}} '''E''' ∙ ''d'''''x''' = −{{intmath|iint|''S''}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''
{{intmath|oint|∂''S''}} '''B''' ∙ ''d'''''x''' = {{intmath|iint|''S''}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''

مع قالب {{تعبير رياضي}}

دالة غاما

Γ(z) =
0
ettz − 1dt
{{math|Γ(''z'') {{=}} {{intmath|int|0|∞}} ''e''<sup>−''t''</sup>''t''<sup>''z'' − 1</sup>''dt''}}

تكامل خطي


C
F(x) ∙ dx = −
C
F(x) ∙ dx
{{math|{{intmath|varointclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x''' {{=}} −{{intmath|ointctrclockwise|''C''}} ''F''('''x''') ∙ ''d'''''x'''}}

معادلات ماكسويل


V
EdS = 1/ε0
V
ρ dV

V
BdS = 0

S
Edx = −
S
B/tdS

S
Bdx =
S
(μ0J + 1/c2E/t) ∙ dS
{{math|{{intmath|oiint|∂''V''}} '''E''' ∙ ''d'''''S''' {{=}} {{sfrac|1|''ε''<sub>0</sub>}}{{intmath|iiint|''V''}} ''ρ'' ''dV''}}
{{math|{{intmath|oiint|∂''V''}} '''B''' ∙ ''d'''''S''' {{=}} 0}}
{{math|{{intmath|oint|∂''S''}} '''E''' ∙ ''d'''''x''' {{=}} −{{intmath|iint|''S''}} {{sfrac|∂'''B'''|∂''t''}} ∙ ''d'''''S'''}}
{{math|{{intmath|oint|∂''S''}} '''B''' ∙ ''d'''''x''' {{=}} {{intmath|iint|''S''}} (''μ''<sub>0</sub>'''J''' + {{sfrac|1|''c''<sup>2</sup>}}{{sfrac|∂'''E'''|∂''t''}}) ∙ ''d'''''S'''}}

طالع أيضًا