يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المناسبة.

رقم موتسكين

من أرابيكا، الموسوعة الحرة

هذه هي النسخة الحالية من هذه الصفحة، وقام بتعديلها عبود السكاف (نقاش | مساهمات) في 19:08، 8 ديسمبر 2022 (بوت: إصلاح أخطاء فحص أرابيكا من 1 إلى 104). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة.

(فرق) → نسخة أقدم | نسخة حالية (فرق) | نسخة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

في الرياضيات ، الnth رقم موتسكين هو عدد الحلات المختلفة لرسم اوتار غير متقاطعة بين n نقاط في دائرة(ليس من الضرورة لمس كل النقاط بالاوتار).[1][2] تتم تسمية أرقام موتسكين على اسم ثيودور موتسكين ولديها تطبيقات متنوعة في الهندسة والنسجيات ونظرية الأرقام .

ارقام موتسكين Mn ل n=0,1, يشكلون التسلسل:

1 ، 1 ، 2 ، 4 ، 9 ، 21 ، 51 ، 127 ، 323 ، 835 ، 2188 ، 5798 ، 15511 ، 41835 ، 113634 ، 310572 ، 853467 ، 2356779 ، 6536382 ، 18199284 ، 50852019 ، 142547559 ، 400763223 ، 1129760415 ، 3192727797 ، 9043402501 ، 25669818476 ، 73007772802 ، 208023278209 ، 593742784829 ، ... (متسلسلة A001006 في OEIS)

أمثلة

الشكل التالي يُظهر الطرق التسع لرسم اوتار غير متقاطعة بين 4 نقاط في دائرة (M4 = 9):

الشكل التالي يُظهر الطرق الواحدة والعشرون لرسم اوتار غير متقاطعة بين 5 نقاط في دائرة (M5 = 21):

الخصائص

أرقام موتسكين تلبية العلاقات تكرار

Mn=Mn1+i=0n2MiMn2i=2n+1n+2Mn1+3n3n+2Mn2.

يمكن التعبير عن أرقام موتسكين من حيث المعامل الثنائي والأرقام الكاتالونية :

Mn=k=0n/2(n2k)Ck.

الدالة المولدة m(x)=n=0Mnxn من أرقام موتسكين ترضي:

x2m(x)2+(x1)m(x)+1=0

انظر أيضا

المراجع

  1. ^ "معلومات عن رقم موتسكين على موقع oeis.org". oeis.org. مؤرشف من الأصل في 2021-05-07.
  2. ^ "معلومات عن رقم موتسكين على موقع babelnet.org". babelnet.org.[وصلة مكسورة]
  • Catalan, Motzkin, and Riordan numbers، 1999
  • Motzkin numbers، 1977
  • Vexillary involutions are enumerated by Motzkin numbers، 2001
  • Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products، 1948