سيدينيون

من أرابيكا، الموسوعة الحرة
(بالتحويل من 𝕊)
اذهب إلى التنقل اذهب إلى البحث
سيدينيون

في الجبر التجريدي، السيدينيون يشكل 16 بعداً جبرياً فوق الأعداد الحقيقية.[1] يرمز لمجموعة السيدينيون بالرمز S. يعرف حالياً نوعان من السيدينيون:

  1. سيدينيون تم الحصول عليه من إنشاء كايلي-ديكسون
  2. سيدينيون مخروطي (ذو 16 بعداً جبرياً).

سيدينيون كايلي-ديكسون

بشكل مشابه للأوكتونيون، فإن عملية ضرب السيدينيون هي عملية غير تبديلية وغير تجميعية. ولكنه يمتلك خاصية تجميع القوى.

كل سيدينيون هو عبارة عن تركيب خطي لعناصره وهي: 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 and e15 والتي هي أسس الفضاء الشعاعي للسيدينيون.

يعطى جدول ضرب عناصر السيدينيون الستة عشرة على الشكل التالي:

× 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
1 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 e1 -1 e3 -e2 e5 -e4 -e7 e6 e9 -e8 -e11 e10 -e13 e12 e15 -e14
e2 e2 -e3 -1 e1 e6 e7 -e4 -e5 e10 e11 -e8 -e9 -e14 -e15 e12 e13
e3 e3 e2 -e1 -1 e7 -e6 e5 -e4 e11 -e10 e9 -e8 -e15 e14 -e13 e12
e4 e4 -e5 -e6 -e7 -1 e1 e2 e3 e12 e13 e14 e15 -e8 -e9 -e10 -e11
e5 e5 e4 -e7 e6 -e1 -1 -e3 e2 e13 -e12 e15 -e14 e9 -e8 e11 -e10
e6 e6 e7 e4 -e5 -e2 e3 -1 -e1 e14 -e15 -e12 e13 e10 -e11 -e8 e9
e7 e7 -e6 e5 e4 -e3 -e2 e1 -1 e15 e14 -e13 -e12 e11 e10 -e9 -e8
e8 e8 -e9 -e10 -e11 -e12 -e13 -e14 -e15 -1 e1 e2 e3 e4 e5 e6 e7
e9 e9 e8 -e11 e10 -e13 e12 e15 -e14 -e1 -1 -e3 e2 -e5 e4 e7 -e6
e10 e10 e11 e8 -e9 -e14 -e15 e12 e13 -e2 e3 -1 -e1 -e6 -e7 e4 e5
e11 e11 -e10 e9 e8 -e15 e14 -e13 e12 -e3 -e2 e1 -1 -e7 e6 -e5 e4
e12 e12 e13 e14 e15 e8 -e9 -e10 -e11 -e4 e5 e6 e7 -1 -e1 -e2 -e3
e13 e13 -e12 e15 -e14 e9 e8 e11 -e10 -e5 -e4 e7 -e6 e1 -1 e3 -e2
e14 e14 -e15 -e12 e13 e10 -e11 e8 e9 -e6 -e7 -e4 e5 e2 -e3 -1 e1
e15 e15 e14 -e13 -e12 e11 e10 -e9 e8 -e7 e6 -e5 -e4 e3 e2 -e1 -1

مراجع

  1. ^ "معلومات عن سيدينيون على موقع ncatlab.org". ncatlab.org. مؤرشف من الأصل في 2020-10-29.
أنظمة الأعداد في الرياضيات
Basic

NZDQRC

N أعداد طبيعية {0,1,2,3..}
P أعداد أولية { 2,3,5,7,11,.. }
Z أعداد صحيحة {..-1,0,1,..}
D أعداد عشرية ( 1.5, .454,..)
Q أعداد كسرية
عدد قابل للإنشاء
أعداد غير منطقة
R أعداد حقيقية (Z,Q,2,π)
أعداد تخيلية
C أعداد مركبة (R,i),
أعداد جبرية
Transcendentals
عدد فوق منته
أعداد حسوبية
R1,1 عدد نصف-عقدي

امتدادات عقدية

عدد عقدي-ثنائي
عدد فوق-عقدي
كواتيرنيون (R,i,j,k)
أوكتانيون
سيدينيون
عدد حقيقي-فائق
عدد فوق-حقيقي
عدد حقيقي-زائد

أعداد خاصة / أخرى

Nominal
عدد ترتيبي size, position {n}
Cardinal {0,1,2,}
عدد تقاربي بتردد p
سلسلة صحيحة
ثوابت رياضية
أعداد ضخمة
i وحدات تخيلية =1
π بي (Pi) ≈ 3.14159 26535 ...
e (constant) ≈ 2.71828 (∉ Q)
لانهاية

قائمة الثوابت

ط - e - √2 - √3 - γ -
φ - β* - δ - α - C2 -
M1 - B2 - B4 - Λ - K -
K - K - L - μ - EB -
Ω - β - λ - D(1) - λμ -
Cah. - Lap. - A-G - Λ - K-L -
Apr. - θ - Bac. - Prt. - Lb. -
Niv. - Sie. - Kin. - F - L <>