ملف:Shadint3.gif

من أرابيكا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

Shadint3.gif(272 × 272 بكسل حجم الملف: 1٫25 ميجابايت، نوع MIME: image/gif، ‏ملفوف، ‏40 إطارا، ‏10ث)

ملخص

الوصف This is the shadow of the reciprocal lattice of a 118 atom single-walled carbon pentacone, rotating about its symmetry axis. As the reciprocal lattice (i.e. the 3D shadow) intersects the 2D Ewald sphere (radius 1/λ) of an incident electron beam (in this case essentially a plane perpendicular to the viewing direction), the reciprocal-lattice lights up in a red map of diffracted intensity.
التاريخ
المصدر عمل شخصي
المؤلف P. Fraundorf

Extended notes

Direct-space pentacone model (left) & corresponding diffraction pattern (right).

The Fourier projection-slice theorem states that the inverse transform of a slice through the origin, extracted from the frequency domain representation of a volume, yields a shadow-like projection of the volume in a direction perpendicular to the slice. In other words, the Fourier transform of an object's "silhouette" is a physical slice through its reciprocal lattice (no shadowing involved). This can be combined with transforms from different directions to determine the object's 3D reciprocal lattice, whose inverse transform will yield the 3D object itself!

For instance, in the red-cyan animation above we've taken the real three dimensional reciprocal lattice of a faceted graphene nanocone i.e. a three-dimensional density distribution I[x,y,z], and used the projection-slice theorem trick to create a rotating shadow visualization. Thus the human ability to recognize moving shadows in 3D can be put to use visualizing 3D distributions projected onto a 2D field.

Running this theorem backwards says that one can combine 2D slices through an object's complex Fourier transform, obtained by looking at its "attenuation shadow" from a variety of directions, into the object's complex three-dimensional Fourier transform. Inverse transforming that beast then can give you a model of the object itself, in its full three dimensional glory. This reversal of the projection-slice theorem is called tomography, and is of course how X-ray CAT scans and MRI imaging often work.

Footnotes


ترخيص

أنا، صاحب حقوق التأليف والنشر لهذا العمل، أنشر هذا العمل تحت الرخص التالية:
GNU head يسمح نسخ وتوزيع و/أو تعديل هذه الوثيقة تحت شروط رخصة جنو للوثائق الحرة، الإصدار 1.2 أو أي إصدار لاحق تنشره مؤسسة البرمجيات الحرة؛ دون أقسام ثابتة ودون نصوص أغلفة أمامية ودون نصوص أغلفة خلفية. نسخة من الرخصة تم تضمينها في القسم المسمى GNU Free Documentation License.
w:ar:مشاع إبداعي
نسب العمل إلى مُؤَلِّفه الإلزام بترخيص المُشتقات بالمثل
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International, 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license.
يحقُّ لك:
  • مشاركة العمل – نسخ العمل وتوزيعه وبثُّه
  • إعادة إنتاج العمل – تعديل العمل
حسب الشروط التالية:
  • نسب العمل إلى مُؤَلِّفه – يلزم نسب العمل إلى مُؤَلِّفه بشكل مناسب وتوفير رابط للرخصة وتحديد ما إذا أجريت تغييرات. بالإمكان القيام بذلك بأية طريقة معقولة، ولكن ليس بأية طريقة تشير إلى أن المرخِّص يوافقك على الاستعمال.
  • الإلزام بترخيص المُشتقات بالمثل – إذا أعدت إنتاج المواد أو غيرت فيها، فيلزم أن تنشر مساهماتك المُشتقَّة عن الأصل تحت ترخيص الأصل نفسه أو تحت ترخيص مُتوافِقٍ معه.
لك أن تختار الرخصة التي تناسبك.

الشروحات

أضف شرحاً من سطر واحد لما يُمثِّله هذا الملف

العناصر المصورة في هذا الملف

يُصوِّر

٢٥ فبراير 2008

تاريخ الملف

اضغط على زمن/تاريخ لرؤية الملف كما بدا في هذا الزمن.

زمن/تاريخصورة مصغرةالأبعادمستخدمتعليق
حالي19:54، 25 فبراير 2008تصغير للنسخة بتاريخ 19:54، 25 فبراير 2008272 × 272 (1٫25 ميجابايت)commonswiki>Unitsphere{{Information |Description= This is the shadow of the reciprocal lattice of a 118 atom single-walled carbon pentacone, rotating about it's symmetry axis. As the reciprocal lattice (the shadow) intersects the Ewald sphere of an incident electron beam (ess

ال1 ملف التالي مكررات لهذا الملف (المزيد من التفاصيل):

الصفحة التالية تستخدم هذا الملف: